Introduction to the Rail Sector Bill Free – Rail Director, CECA

CECA NW'S FOUNDATIONS GROUP AND LJMU CIVIL & STRUCTURAL ENGINEERING DEPARTMENT

12 February 2020

Contents:

- How I got here
- Building Railways
 - Historically & Now
- The Railway Today
 - Earthworks
 - Structures
 - Track
 - Signalling
 - Electrification
 - Stations
- UK Rail Structure
 - Organisation
 - Unintended consequences
 - Railway re-openings
- Case studies

How I got here - 1

My (gap year)connection to Liverpool

- Seaforth Dock, Liverpool opened in 1971
- Bristol West Dock in 1974

How I got here - 2

1980s Motorways & Highways
1990s General civil engineering
1998 – 2018 Railways

Site Engineer to Site Agent Estimator, Planner, Bid Manager Business Development

Building Railways - Historical:

- First proper railway opened in 1830 most of the GB network built by 1899
- Largely built by hand with horse power & temporary rail tracks
- Didn't always go to plan!

Building Railways - Now:

- New railways generally high speed or metro
- Similar to motorway construction but with tighter tolerances and (much) less deviation
- Longer sections tunnelled than in the early railways

The Railway Today:

- "Putting Passengers First"

 quite a change in thinking
- A record level of renewal work
- Targeted enhancement work
- Restricted access for work
- Environmental restraints
- Safety concerns

Earthworks:

- Cross sections not unlike highways
- Cuttings deeper & embankments higher than historic roads
- Issues with:
 - Buried services
 - Inadequate & neglected drainage
 - Vegetation
 - Over steep slopes

Structures:

- Repairing / replacing failed structures bridges & retaining walls
- Increasing clearances for electrification and larger gauge trains
- Structures designed for rapid installation during railway possessions

Track

- Alignment is critical
- A lot of subgrade issues, due to age of assets
- Ballast and rails deteriorate reasonably quickly / slab track very critical wrt subgrade
- High tech solutions for track laying and maintenance
- Modern track has a very carefully prepared subgrade

Signalling

- A control system for trains using principles established in the earliest days of the railway
- Now mostly colour light signals, but still some semaphore systems surviving
- "Digital Rail" will bring in cab signalling and closer / faster running and "Traffic Management"

Electrification

- Used on all types of systems:
 - 30 kph light rail (750v DC)
 - 100 kph metro generally third rail (750v DC)
 - 200 kph heavy rail (25kv AC)
 - 320 kph high speed rail (25kv AC)

• Depending on source of power – generally lower carbon emissions

Ceo

 UK build has, recently, been prohibitively expensive – but recent schemes have been built to budget

Stations

- Most innovative area for new build Blackfriars Station being an example
- A lot of work is carried out on the refurb / improvement of existing stations
- Both work types generally carried out by Civil Engineering Contractors!

UK Rail Structure

Octopus of Confusion

Funnel of Complexity

Process	Involvement
Build / Handback	Delivery
DRRD Detailed Route Requirements Document	Development
CRT Contract Requirements Technical	Contract
RRD Route Requirements Document	Stakeholders
CRD Client Requirements Document	Scope
What passengers want	Outcome wanted

Misalignment of Stakeholders

Description in Contract Documents

What was really required – and built

Railway re-openings

- In the news now re-openings in England. Blythe, Skipton etc
- Not new in Scotland, lines include Borders, Airdie Bathgate, Stirling Alloah and Larkhall.
- In England, only the East London Line (so far)
- Standard required is higher than what you would find on similar lines that have remained open
- All reopened lines have exceeded their ridership predictions
- This is good work for civil engineers rail work without the need for possessions / blockades

Case Study: Worksop Station Refurb

- Work by Network Rail and "Commercial & Marine"
- Refurbishment of station, dating from 1849
- Historic livery from the LNER era (1930s)
- Original station features recreated from scratch
- Category winner at the National Rail Heritage Awards (NRHA)

Case Study: Dulwich staircases

- Work by Network Rail / BAM
- Existing stairs were suffering from "wet rot" and needed replacement

- New stairs manufactured, off site, from Accoya timber
- Worked with local conservation officer

Case Study

Southampton Tunnel – Gauge Enhancement

Original Proposal:

- Carry out the work in two distinct
 Christmas Blockades:
 - 2009 for Up Line
 - 2010 for Down Line
- 18 month programme with two mobilisations
- Two Christmas' worth of disruption
- Benefits available in 2011
- Overall budget, inc Schedule 4 etc: £29m

Alternative – developed via ECI

- By Carillion & TSO via civils framework
- Based on experience from HS 1 slab track
- Alternative agreed with TOCs & FOCs:
 - ALO / Single Line working for much of the construction period
 - Freight Trains diverted
- Track prefabricated in DB yard and delivered to site by train
- Work completed over Christmas 2009 / Jan 2010
- Benefits available in 2010
- Contract value circa £9m
- Overall cost, inc Schedule 4 etc: £25m
- Remaining £4m used to fund additional gauge clearance on diversionary route

NetworkRail

Case Study: Lincoln – River Witham Bridge

- Work by Network Rail / AMCO
- The River Witham Bridge was built in 1848 and used the Fairbairn tubular box edge girder system for the main span, over the river
- Important route, to Immingham, carries a lot of freight trains
- The new structure uses the existing piers together with a "standard" composite steel / concrete prefabricated deck unit
- They were able to reposition the, refurbished, original box girders either side of the new deck
- Commended at the NRHA

Case Study: North London Line - 1

- Work by Network Rail & Carillion
- Railway in artificial "canyon" opened in the 1850s
- Unstable walls & leaking sewer
- Upgraded to four tracks with overhead line
- Needed increased headroom – so lowered track, but:

Case Study: North London Line - 2

Case Study: North London Line - 3

Any questions?

